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Preposition: A subject O of ℝ is open if and only 

if it is union of at the most of countable number 

of disjoint open intervals.

Proof: If O is a countable union of open intervals

then clearly O is open.

Conversely, suppose that O is an open set.



Let x ∈ O then there exists y such that (x,y) ⊆O

Let b= sup{ y | (x,y) ⊆ O}

Similarly, there exists z such that (z,x) ⊆ O

Let a= inf{z | (z,x) ⊆ O}

Define

Ix = (a,b) then x ∈ Ix



And Ix ⊆ O. Since if w ∈ Ix , w ≠x

Then either w<x or w>x and a <w <b.

Next, if a ∈ O, then (a-ε, a+ε) ∈ O for some ε>0

and so (a-ε, x) ⊆ O.

This contradicts the definition of a.

Therefore a∉O. Similarly, b∉O.

Now, O=



To prove that the result we need to show that the

collection {Ix | x ∈ O} has at the most countable

number of open intervals which are mutually

disjoint.

To show that this collection consists of disjoint

open intervals, we show that for x,y ∈ O, x≠y

either Ix = Iy or Ix ∩ Iy = Ø



Let Ix = (a,b) and Iy = (c,d)

Let w ∈ Ix ∩ Iy

Then a<w<d implies that a<d.

Since a<d and Iy = (c,d) and a∉O, a ≤ c.

Similarly, c<w<b⇒ c<b and so c ≤ a

Therefore c=a.

Similar arguments imply that b=d.



Hence Ix ∩ Iy ≠ Ø ⇒ Ix = Iy

Thus the collection, C= {Ix | x ∈ O} consists of

disjoint open intervals.

Let qx be a fixed rational number in Ix

Then Ix → qx is one-one mapping from C to Q.



Therefore, C consists of at most countable 

numbers of distinct open intervals.

This completes the proof.



Lindel of Covering

Preposition: Let e= {Oα | α ∈Λ} be a collection 

of open intervals in ℝ. Then e has a countable 

sub- collection {Oi | i= 1, 2, _ _ _} such that 

Proof: Let x ∈ . Then x ∈ Oα for some α ∈Λ

and so there exists an open interval Ix such that 

x∈ Ix⊆ Oα



Let Jx be an open interval with rational end points

such that x ∈ Jx ⊆ Ix .

Therefore, 

Since, {Jx | x ∈ Oα} is a countable collection.

Write {Jx | x ∈ Oα} = {J1, J2, _ _ _}

Let Ok∈ e such that Jk ∈ Ok

Then 



Unit III: Lebesgue Theory

Let I1 be an interval in ℝ.

Define the length of I.

l(I)=

Bounded intervals in ℝ are [a,b], (a,b], (a,b), [a,b) 

for a,b ∈ ℝ.

The length of these intervals is b-a.



We define (Lebesgue) outer Measure.

Let A ⊆ ℝ and let {Ii | i= 1, 2, _ _} be the set of

open intervals in ℝ such that

A=

Define m* A= inf { }

Where the inf is taken over all at the most

countable number of open intervals which cover

I.



If A ⊆ ℝ ; 

0≤ m*A< ∞

1) Outer Measure of A is non- negative.

2) If A ⊆ B ⊆ ℝ

m*A ≤ m*B

(∵ Every open covering of B is open covering of 

A)

As set increases, its measure also increases.



⇒ m* is non- negative and monotone function.

m* : P (ℝ) → ℝ+ ∪ {∞}

3) For any x ∈ ℝ,

Define A+x = {a+x | a ∈A}

Then, m* (A+x) = m*A, 

l(In +x) = l(In )



If {In                is an open covering of A.

Then, {In+x is an open covering of A+x.

A+x ⊆ In+x

m*(A+x) ≤  m* (     In+x)

=      (In+x)

=      (In)



4) m*A < ∞ for any bounded set A.

Proof: Let a= inf A and b= sup A

Then for any ε>0,

A ⊆ ( a - ε/2 , b + ε/2)

And so by definition, 

m*A ≤ l ( a - ε/2 , b + ε/2)

= b – a + ε

Then, m*A < ∞



5) m*A = 0 if A is countable.

Let A= { a1 , a2 , _ _}

For any ε>0, consider the intervals

In = (an - ε/2
n+1 , an + ε/2

n+1 )

Then for each n, an ∈ In

So,  A ⊆ In

Therefore, 



m*A ≤       (In)

=     ε/2
n

= ε

Hence for any ε >0,

m*A≤ ε

Since ε is arbitrary number,

We have, m*A = 0



Definition: A set with outer measure zero is a 

null set.

Example: Q is countable.

∴ Its outer measure = 0

m*Q = 0 ∴ It is a null set

(Q is unbounded but it is having finite measure so 

if a set is unbounded then measure may be finite 

or not)



Metric set is said to separate if it has a

countable dense subset.

An uncountable set with measure zero is Q and 

this set is called cantor set.

For cantor set, 

m*A ≤ (⅔)n ∀ n

As n→∞

m*A = 0



∴ Cantor set has measure zero.

It is perfect so it is uncountable.

∴A cantor set is compact perfect.

So, it is uncountable 

And its measure is zero.



Example: Let I be an interval then m*I = l (I)

Proof: Assume first that the result holds for 

compact intervals

i.e. Intervals of type [a,b], a,b ∈ ℝ

If I is bounded and 

a= inf I ,  b= sup I

a,b ∈ ℝ, we have for any ε> 0



[a + ε/2 , b - ε/2 ] ⊆ I ⊆ [a,b]

And so 

m* [a + ε/2 , b - ε/2 ] ≤ m*I ≤ m* [a,b]

b – a – ε ≤ m*I ≤ b – a 

Since ε is arbitrary

⇒ m*I = b-a

m*I = l(I)



If I is unbounded then for any positive integer n, 

I has an interval J such that l(J) = n

Thus J ⊆ I 

⇒ m*I > m*J = l (J)= n

Therefore 

m*I =∞ = l (I)



Let I be a compact interval and let ε> 0

Then ∃ an open covering { In                  such that

m*(I) + ε >       (In )

Since I is compact, this open covering has a finite 

subcovering.

Let Ji = (a1 , b1), _ _ _ Jm = (am , bm)  be a 

subcovering of I such that

I ∩ Ji ≠ ϕ ∀ i



And a1 < a2 < _ _ < am

Since an interval is connected,

The intervals Ji ‘s are overlapping.

Therefore, 

(Ji ) ≥ l(I) = b- a

Thus, 

m*(I) + ε ≥       (In ) 



≥       (Ji ) ≥ l(I) 

Therefore, m*(I) ≥ l(I) 

Also as I = [a,b]

⇒ I ⊆ [a - ε/2 , b + ε/2 ] 

⇒ m*I ≤ b – a = l(I)

⇒ m*I = l(I)



Outer Measure

Theorem: Let (An) be a sequence of subsets of 

ℝ then m*(     An) ≤       *An

Proof: 

If m* An = ∞ then it is obvious; if m* An < ∞ 

Let ε>0, for each n, ∃ an open interval such that 

An ⊆

And m* An + ε/2
n >       (In,k ) 



Now, {In,k }n,k is a sequence of open intervals such 

that 

(     An) ⊆

Then,

m* (     An) ≤            (In,k )

<        *An +     ε/2
n



≤         *An + ε

Hence,   m* (     An) ≤       *An

Example: 

On open interval (0,1) for x,y ∈ (0,1) define 

x ~ y if x - y ∈ Q. 

Then ~ is an equivalence relation.



Let A be the set consisting of exactly one element 

from each equivalence class.

Then A ⊆ (0,1)

And so m*A< ∞                           (∵A is bdd)

A1 , A2 are equivalence classes.

Therefore,

UAi = (0,1)



(0,1) is uncountable 

Since m*(0,1) = 1 ≠ 0

Therefore, by theorem

(0, 1) is uncountable.

(0,1) = A1 ∪A2 _ _

Each of A1 , A2 are countables

Collection of sets → points both uncountable



Let D= (-1,1) ∩ Q

Let B= D+A

Since D is countable with D= {r1 , r2 , _ _}

So that

B=      (rn + A)

(0,1) ⊆ B ⊆ (-1, 2)



Thus, 1 ≤ m*B  ≤ 3

Let  An = rn + A

For  n ≠ m,

An ∩ Am = ϕ

Let  x  ∈ An ∩ Am 

x = rn + a = rm+ a’



rn and rm are rationals.

So a and a’ differ by rational.

But we are taking one element from each 

equivalence class and a and a’ are equivalent.

⇒ a = a’

⇒ a, a’ ∈ A

⇒ rn = rm , n=m 



Also m* An = m*A

Now (An ) is sequence of disjoint and distinct sets 

with finite measure

Such that B=      An

For these sets, 

m*B ≠       m* An



First note that m*A ≠ 0

As then m*B = 0

m* An = ∞  

But,  B =      An 

m*B is finite

Therefore,

m*B ≠      m* An 



A subset E of ℝ is called Lebesgue Measurable 

if  m*A = m* (A ∩ E) + m* ( A ∩ Eᶜ)

For every A ⊆ ℝ,

(I) If E is measurable then so is Eᶜ

Since for A, B ⊆ ℝ

m* (A∪ B) ≤  m*A + m*B



A=(A ∩ E) ∪ ( A ∩ Eᶜ) 

So, m*A ≤ m* (A ∩ E) + m*( A ∩ Eᶜ) 

For showing that E is measurable, we need to 

check that

m*A ≥ m* (A ∩ E) + m*( A ∩ Eᶜ) 



(II) If m* E = 0 then E is measurable.

Let A ⊆ ℝ

Since E ∩ A ⊆ E

m* (A ∩ E)  = 0

Now, ( A ∩ Eᶜ) ⊆A

⇒ m* ( A ∩ Eᶜ) ≤ m* A 



Thus, m*A ≥ m* (A ∩ E) + m*( A ∩ Eᶜ)

Hence E is measurable.

(III)  If E is measurable then so is E+x for any 

x∈ℝ

⇒ m*A = m* (A-x) = m* ((A-x) ∩ E) + 

m*((A-x) ∩ Eᶜ) 



= m* ((A-x) ∩ E + x) + m* ((A-x) ∩ Eᶜ + x) 

= m* (A ∩ E + x) + m* (A ∩ (E + x)ᶜ )

Hence,

E + x is measurable.



(IV) If E and F are measurable then E ∪ F is 

also measurable.

⇒ If E, F are measurable then,

E ∩ F = (Eᶜ ∪ Fᶜ)ᶜ

E \ F = E ∩ Fᶜ

E, F are measurable ⇒ E ∪ F is also measurable.



To prove this, we need to verify that 

m*A = m* ( A ∩ (E ∪ F) + m* (A ∩ (E ∪ F)ᶜ

For any A ⊆ ℝ,

m*A = m* ( A ∩ (E ∪ F) + m* (A ∩ (Eᶜ ∩ Fᶜ) 

Now,

( A ∩ (E ∪ F) ∩ E = A ∩ E



( A ∩ (E ∪ F) ∩ Eᶜ =  A ∩ F ∩ Eᶜ

m*A = m* (A ∩ E) + m* (A ∩ Eᶜ)

= m* (A ∩ E) + m* (A ∩ Eᶜ ∩ F) +

m* (A ∩ Eᶜ ∩ Fᶜ)

= m* (A ∩ (E ∪ F) ∩ E) + m* (A ∩ F∩ Eᶜ)

+ m* (A ∩ (E ∪ F)ᶜ



= m* (A ∩ (E ∪ F) ∩ E) +

m* (A ∩ (E ∪ F) ∩ Eᶜ) + m* (A ∩ (E ∪ F)ᶜ )

= m* (A ∩ (E ∪ F)) + m* (A ∩ (E ∪ F)ᶜ )

Now, 

m* (A ∩ (E ∪ F))  = m* (A ∩ E) +

m* (A ∩F ∩Eᶜ)

Provided E is measurable.



If  E ∩ F = ϕ , E, F measurable 

Then F ⊆ Eᶜ

m* (A ∩ (E ∪ F)) = m* (A ∩ E) + m* (A ∩ F) 

In particular, 

If A= E ∪ F

m* (E ∪ F) = m*E + m*F



Thus, we can say

If E and F are measurable and E ∩ F = ϕ

Then, 

m* (A ∩ (E ∪ F)) = m* (A ∩ E) + m* (A ∩ F) 

∀A ⊆ ℝ

And, m* (E ∪ F) = m*(E) + m* (F)



Now, inductively, if E1 , E2 ,_ _ _, En are mutually 

disjoint measurable sets then,

m*(    Ei ) =      m* Ei
 

𝑛

𝑖=1

 




