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Preposition: A subject O of R is open if and only
If it Is union of at the most of countable number

of disjoint open intervals.

Proof: If O iIs a countable union of open intervals

then clearly O Is open.

Conversely, suppose that O Is an open set.



Let x € O then there exists y such that (x,y) € O
Let b=sup{y| (x,y) € O}

Similarly, there exists z such that (z,x) € O

Let a= Iinf{z | (z,x) € O}

Define

|, = (a,b) thenx €1,



And I, € O.Sinceifwel, ,w#x
Then either w<x or w>x and a <w <b.

Next, iIf a € O, then (a-¢, atg) € O for some >0

and so (a-¢, X) € O.
This contradicts the definition of a.
Therefore agO. Similarly, b&O.
Now, O= Q}IX



To prove that the result we need to show that the
collection {l, |x € O} has at the most countable
number of open intervals which are mutually

disjoint.

To show that this collection consists of disjoint
open Intervals, we show that for x,y € O, x#y

either I, =1 or I, N1, =0



Let |, =(ab)and I, = (c,d)
Letwel, NI,

Then a<w<d implies that a<d.
Since a<d and I, = (c,d) and a¢O, a<c.
Similarly, c<w<b = c<bandsoc<a
Therefore c=a.

Similar arguments imply that b=d.



Hence L, NI, 70 =1, =1,

Thus the collection, C={l, | x € O} consists of
disjoint open intervals.

Let g, be a fixed rational number in [,

Then I, — q, IS one-one mapping from C to Q.



Therefore, C consists of at most countable

numbers of distinct open intervals.

This completes the proof.



L_indel of Covering

Preposition: Let e= {Od| a € A} be a collection
of open intervals in R. Then e has a countable
sub- collection {Oi | 1= 1, 2, } such that

UC.

UOa ZUOi

a€cEA i=1

Proof: Letx € U Oa . Then X € Oa for some a € A

e AN

and so there exists an open interval I, such that
XE IX C Ou



et Jx be an open interval with rational end points
suchthatx € Jx € I, .

Therefore, U"“ = w

xEUOx

Since, {J, | x € O«} Is a countable collection.
Write {J, | X € Oo} = {J1.J2,___}

Let OcE e such that J, € Ok

Then | oa = U"“

oEN



Unit 111: |_ebesque Theory

Let I, be an interval in R.

Define the length of I.

()= { 00 if I is unbounded
()= Sup I — InfIifIis bounded

Bounded intervals in R are [a,b], (a,b], (a,b), [a,b)
fora,b € R.

The length of these intervals iIs b-a.



We define (Lebesgue) outer Measure.

Let A Rand let {li|i1=1, 2, _} be the set of

open Iintervals in R such that
A= s
Define m* A= Inf {ig(mm . QH}
Where the Inf iIs taken over all at the most

countable number of open intervals which cover



IfTACR;

0<m*A<

1) Outer Measure of A Is non- negative.

2)IFACSBCR

m*A <m*B

(- Every open covering of B Is open covering of
A)

As set Increases, I1ts measure also Increases.



= mM™* IS non- negative and monotone function.
m*: P (R) — R*U {oo}

3) For any x € IR,

Define A+x = {a+x|a €A}

Then, m* (A+x) = m*A,

(1, +%) = 1(1,)



If {l,{ , isan open covering of A.
Then, {l +x {nc: 1 Is an open covering of A+x.
A+x c |J1,+x

m(A+x) < m* (| 1,+%)

— Z L(1,+X)
=) 10,)



4) m*A < oo for any bounded set A.

Proof: Let a= inf A and b=sup A

Then for any >0,

Ac(a-%,,b+%,)

And so by definition,

m*A<Il(a-°®,,b+°.)
=b-a+e

Then, m™*A < o



5) m*A =0 if Ais countable.
LetA={a,,a,, _}

For any >0, consider the intervals
|, = (a, - °,"*, a, + %,1)

Then for each n, a, € I,

S0, AC an

Therefore,



Hence for any ¢ >0,
m*A<eg
Since ¢ Is arbitrary number,

We have, m*A =0



Definition: A set with outer measure zero IS a

null set.
Example: Q iIs countable.
= Its outer measure =0
m*Q =0 -~ Itis anull set

(Q 1s unbounded but it is having finite measure so
If a set Is unbounded then measure may be finite

or not)



Metric set 1s said to separate If It has a

countable dense subset.

An uncountable set with measure zero 1s Q and

this set is called cantor set.
For cantor set,
m*A<(%)"Vn
ASs n—oo

MmM*A =0



~. Cantor set has measure zero.

It is perfect so it Is uncountable.
=~ A cantor set is compact perfect.
So, It Is uncountable

And 1ts measure IS zero.



Example: Let | be an interval then m*1 =1 (1)

Proof: Assume first that the result holds for

compact intervals
l.e. Intervals of type [a,b], a,b € R
If 1 Is bounded and
a=infl, b=supl

a,b € R, we have forany ¢> 0



[a+%,,b-%,]<1c[ab]

And so

m* [a+ %/, ,b-%,]<m*I <m* [a,b]
b-a—-e<m*I<b-a

Since ¢ Is arbitrary

= m*| =Db-a

m*1 = I(1)



If | Is unbounded then for any positive integer n,
| has an interval J such that I(J) = n

ThusJc |

=>m*I>m*)J=1{J)=n

Therefore

m*] =00 = (I)



Let | be a compact interval and let e> 0

Then 3 an open covering { |, { “> such that

n+1
m*(1) +g>Zz(|

Since | 1S compact this open covering has a finite
subcovering.

LetJ. =(@,,b), _ J.=(a,,b,) bea
subcovering of | such that

INJ#¢Vi



Anda; <a,<__<a,
Since an interval Is connected,
The intervals J; ‘s are overlapping.
Therefore,
iz@i)z I(I) =Db-a
Thus,

m*(l) +2> "1 (1)



zi 1 (3)>1(1)
Therefore, m*(IT)F; (1)
Also as | = [a,b]
>I1c[a-%,,b+%,]
>m*[<b-a=I(l)

= m*1 = ()



Outer Measure

Theorem: Let (A,) be a sequence of subsets of
R then m*(D A, < im*An

Proof:

If m* A, = co then it 1s obvious; if m* A, <o

Let £>0, for each n, 3 an open interval such that
An C Uln,m

Co

And m* A, + 5,053 1(1,,)

k=1



Now, {1, }»« IS asequence of open intervals such

that



< ) m*A_+¢
Hence, m* ([ JA) <) m*A,
n=1 n=1
Example:

On open interval (0,1) for x,y € (0,1) define

X~yifx-yeaQ.

Then ~ Is an equivalence relation.



Let A be the set consisting of exactly one element

from each equivalence class.
Then Ac (0,1)
And so m*A< o (- Als bdd)
A, , A, are equivalence classes.
Therefore,

UA, = (0,1)



(0,1) Is uncountable

Since m*(0,1)=1+#0
Therefore, by theorem

(0, 1) 1s uncountable.
(01)=A,UA, _

Each of A, , A, are countables

Collection of sets — points both uncountable



Let D=(-1,1) N Q

Let B= D+A

Since D is countable with D={r,,r,, _}
S0 that

B= J (r, + A)

(0,1)_§ BC (-1, 2)




Thus, 1 <m*B <3
Let A, =r,+A
For n #m,

A NA, =¢

Let x € A, NA,

X=r,+ta=r,+a



r, and r., are rationals.
So a and a’ differ by rational.

But we are taking one element from each

equivalence class and a and a’ are equivalent.
> a=a
=a,a’ € A

=r, =r,,N=m



Also m* A = m*A

Now (A, ) Is sequence of disjoint and distinct sets
with finite measure

Such that B= D A,

For these sets,

m*B # Z m* A,
n=1



First note that m*A # 0
AS DEhen m*B =0

> m*A,= oo
But, B=|] A,
m*B IS fir:;e
Therefore,

m*B # Z m* A,
n=1



A subset E of R is called Lebesgue Measurable
if m*A=m* (AN E)+m* (A N E°
For every A € R,

(1) If E Is measurable then so Is E€

SinceforA,BC R

m* (AU B) < m*A + m*B



A=(ANE) U (AN E°)

So, m*A <m* (AN E)+m*(ANE°

For showing that E Is measurable, we need to

check that

m*A>m* (AN E)+m*( AN E°



(1) If m* E = 0 then E Is measurable.
LetAC R

Simce ENACE

m* (ANE) =0

Now, (A N ES) € A

= m* (AN E)<m*A



Thus, m*A>m* (AN E) + m*( AN E)
Hence E IS measurable.

(I11) If E i1s measurable then so is E+x for any

XER

= M*A = m* (A-X) = m* ((A-x) N E) +

m*((A-x) N E°)



=m* ((A-x) N E +x) + m* ((A-x) N E® + X)

=m*(ANE+x)+m* (AN (E +Xx)°)
Hence,

E + X IS measurable.



(1V) If E and F are measurable then E U F is

also measurable.

= If E, F are measurable then,
ENF=(E°UF)F

E\F=ENF°

E, F are measurable = E U F iIs also measurable.



To prove this, we need to verify that
m*A=m* (AN (EUF)+m* (AN (EUF)°
Forany A € R,

m*A=m* (AN (E UF)+m* (AN (E°N F°)
Now,

(AN(EBUFNE=ANE



(AN(EUF)NE‘=ANFNE°
m*A =m* (AN E)+m* (AN E°
=m*(ANE)+m*(ANE°NF)+
m* (A N E° N F°)
=m* (AN((EUF)NE)+m* (AN FN E°)

+m* (AN (E UF)°



=m* (AN (EUF)NE)+
m* (A N (E U F) N EY +m* (AN (EUF))
—m* (A N (E U F))+m* (AN (E UF))

Now,

m* (AN (EUF)) =m* (ANE) +
m* (A NF NE°)

Provided E i1s measurable.



If ENF=¢,E, Fmeasurable

Then F € E°
m* (AN (E U F))=m* (AN E)+m* (ANF)
In particular,
IfA=EUF

m* (E U F) = m*E + m*F



Thus, we can say

If E and F are measurable and EN F = ¢
Then,

m* (AN (EUF))=m* (AN E)+m* (AN F)
VACR

And, m* (E U F) = m*(E) + m* (F)



Now, inductively, IfE, , E,, |, E, are mutually

disjoint measurable sets then,

m( | JE; ) => m*E
= n=1






