LebesgueTheory I

Submitted by: Gagandeep

Assistant Professor in Mathematics

H.M.V. College, Jalandhar

17th December, 2018

Preposition: A subject O of \mathbb{R} is open if and only if it is union of at the most of countable number of disjoint open intervals.

Proof: If O is a countable union of open intervals then clearly O is open.

Conversely, suppose that O is an open set.

Let $x \in O$ then there exists y such that $(x,y) \subseteq O$ Let $b = \sup\{ y \mid (x,y) \subseteq O \}$ Similarly, there exists z such that $(z,x) \subseteq O$

Let $a = \inf\{z \mid (z,x) \subseteq O\}$

Define

 $I_x = (a,b)$ then $x \in I_x$

And $I_x \subseteq O$. Since if $w \in I_x$, $w \neq x$ Then either w<x or w>x and a <w <b. Next, if $a \in O$, then $(a-\varepsilon, a+\varepsilon) \in O$ for some $\varepsilon > 0$ and so $(a-\varepsilon, x) \subseteq O$. This contradicts the definition of a. Therefore $a \notin O$. Similarly, $b \notin O$. Now, $O = \bigcup_{x \in O} Ix$

To prove that the result we need to show that the collection $\{I_x \mid x \in O\}$ has at the most countable number of open intervals which are mutually disjoint.

To show that this collection consists of disjoint open intervals, we show that for $x,y \in O$, $x \neq y$ either $I_x = I_y$ or $I_x \cap I_y = \emptyset$ Let $I_x = (a,b)$ and $I_y = (c,d)$ Let $w \in I_x \cap I_v$ Then a<w<d implies that a<d. Since a < d and $I_v = (c,d)$ and $a \notin O$, $a \leq c$. Similarly, $c < w < b \Rightarrow c < b$ and so $c \le a$ Therefore c=a.

Similar arguments imply that b=d.

Hence $I_x \cap I_v \neq \emptyset \Rightarrow I_x = I_v$ Thus the collection, $C = \{I_x | x \in O\}$ consists of disjoint open intervals. Let q_x be a fixed rational number in I_x Then $I_x \rightarrow q_x$ is one-one mapping from C to Q. Therefore, C consists of at most countable numbers of distinct open intervals. This completes the proof.

Lindel of Covering

Preposition: Let $e = \{O_{\alpha} \mid \alpha \in \Lambda\}$ be a collection of open intervals in **R**. Then e has a countable sub- collection $\{O_i \mid i=1, 2, __\}$ such that $\bigcup \mathbf{0}\alpha = \bigcup \mathbf{0}i$ **Proof**: Let $x \in \bigcup_{\alpha} O_{\alpha}$. Then $x \in O_{\alpha}$ for some $\alpha \in \Lambda$ and so there exists an open interval I_x such that $x \in I_x \subseteq O_\alpha$

Let J_x be an open interval with rational end points such that $x \in J_x \subseteq I_x$. Therefore, $\bigcup_{\alpha} O\alpha = \bigcup_{x \in IIO\alpha} Jx$ Since, $\{J_x \mid x \in O_{\alpha}\}$ is a countable collection. Write $\{J_x \mid x \in O_{\alpha}\} = \{J_1, J_{2, \dots}\}$ Let $O_k \in e$ such that $J_k \in O_k$ Then $\bigcup_{\alpha \in \Lambda} \mathbf{0}\alpha = \bigcup_{k=1}^{n} \mathbf{0}_{k}$

Unit III: Lebesgue Theory

Let I_1 be an interval in \mathbb{R} .

Define the length of I. $l(I) = \begin{cases} \infty & \text{if I is unbounded} \\ \text{Sup I} - \text{Inf I if I is bounded} \end{cases}$ Bounded intervals in \mathbb{R} are [a,b], (a,b], (a,b), [a,b)

for a,b $\in \mathbb{R}$.

The length of these intervals is b-a.

We define (Lebesgue) outer Measure.

Let $A \subseteq \mathbb{R}$ and let $\{I_i | i = 1, 2, _\}$ be the set of

open intervals in \mathbb{R} such that

$$A = \bigcup_{i=1}^{\infty} I_i$$

Define m* A= inf { $\sum_{i=1}^{\infty} l(I_i) | A \subseteq \bigcup_{i=1}^{\infty} I_i$ }

Where the inf is taken over all at the most countable number of open intervals which cover I.

If $A \subseteq \mathbb{R}$;

 $0 \le m^* A \le \infty$

Outer Measure of A is non- negative.
 If A ⊆ B ⊆ ℝ
 m*A ≤ m*B

(: Every open covering of B is open covering ofA)

As set increases, its measure also increases.

If
$$\{I_n \{ \prod_{n=1}^{\infty} is an open covering of A. \}$$

Then, $\{I_n + x \{ \prod_{n=1}^{\infty} is an open covering of A + x. \}$
 $A + x \subseteq \bigcup_{n=1}^{\infty} I_n + x$
 $m^*(A + x) \leq m^* (\bigcup_{n=1}^{\infty} I_n + x)$
 $= \sum_n l(I_n + x)$
 $= \sum_n l(I_n)$

4) $m^*A < \infty$ for any bounded set A. **Proof**: Let a= inf A and b= sup A Then for any $\varepsilon > 0$, $A \subseteq (a - \varepsilon/2, b + \varepsilon/2)$ And so by definition, $m^*A \le l (a - {^{\epsilon}/_2}, b + {^{\epsilon}/_2})$ $= b - a + \varepsilon$ Then, $m^*A < \infty$

5)
$$m^*A = 0$$
 if A is countable.

Let
$$A = \{ a_1, a_2, _ \}$$

For any $\varepsilon > 0$, consider the intervals

$$\mathbf{I_n} = (\mathbf{a_n} - {\epsilon / 2^{n+1}} , \mathbf{a_n} + {\epsilon / 2^{n+1}})$$

Then for each n, $a_n \in I_n$

So, $A \subseteq \bigcup_{n=1}^{\infty} I_n$

Therefore,

Hence for any $\varepsilon > 0$,

m*A≤ε

Since ε is arbitrary number,

We have, $m^*A = 0$

Definition: A set with outer measure zero is a null set.

Example: Q is countable.

 \therefore Its outer measure = 0

 $m^*Q = 0 \therefore$ It is a null set

(Q is unbounded but it is having finite measure so if a set is unbounded then measure may be finite or not)

Metric set is said to separate if it has a countable dense subset.

An uncountable set with measure zero is Q and this set is called cantor set.

For cantor set,

 $m^*A \leq (2/3)^n \forall n$

As n→∞

 $m^*A = 0$

 \therefore Cantor set has measure zero. It is perfect so it is uncountable. \therefore A cantor set is compact perfect. So, it is uncountable And its measure is zero.

Example: Let I be an interval then $m^*I = l(I)$ **Proof**: Assume first that the result holds for compact intervals i.e. Intervals of type [a,b], $a,b \in \mathbb{R}$ If I is bounded and a = inf I, b = sup Ia,b $\in \mathbb{R}$, we have for any $\varepsilon > 0$

$$[a + {\varepsilon}/{2}, b - {\varepsilon}/{2}] \subseteq I \subseteq [a,b]$$

And so

$$m^* [a + {\varepsilon/2}, b - {\varepsilon/2}] \le m^* I \le m^* [a,b]$$
$$b - a - \varepsilon \le m^* I \le b - a$$

Since ε is arbitrary

 \Rightarrow m*I = b-a

 $m^*I = l(I)$

```
If I is unbounded then for any positive integer n,
I has an interval J such that l(J) = n
Thus J \subseteq I
\Rightarrow m*I > m*J = l (J)= n
Therefore
```

 $m^*I = \infty = l(I)$

Let I be a compact interval and let $\varepsilon > 0$

Then \exists an open covering { $I_n \begin{cases} \infty \\ n+1 \end{cases}$ such that $m^*(I) + \varepsilon > \sum_{n=1}^{\infty} l(I_n)$ Since I is compact, this open covering has a finite subcovering.

Let $J_i = (a_1, b_1), ___J_m = (a_m, b_m)$ be a subcovering of I such that $I \cap J_i \neq \phi \forall i$

And
$$a_1 < a_2 < _ - < a_m$$

Since an interval is connected,

The intervals J_i 's are overlapping.

```
Therefore,

\sum_{n=1}^{m} l(J_i) \ge l(I) = b-a
Thus,
```

$$m^*(\mathbf{I}) + \varepsilon \geq \sum_{n=1}^{\infty} l(\mathbf{I}_n)$$

Outer Measure

Theorem: Let (A_n) be a sequence of subsets of \mathbb{R} then $m^*(\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} m^*A_n$ Proof:

If m* $A_n = \infty$ then it is obvious; if m* $A_n < \infty$ Let $\varepsilon > 0$, for each n, \exists an open interval such that $A_n \subseteq \bigcup_{k=1}^{\infty} I_{n,\kappa}$ And m* $A_n + \frac{\varepsilon}{2^n} > \sum_{k=1}^{\infty} l(I_{n,k})$

Now, $\{I_{n,k}\}_{n,k}$ is a sequence of open intervals such that

$$\left(\bigcup_{n=1}^{\infty}\mathbf{A}_{n}\right)\subseteq\bigcup_{n=1}^{\infty}\bigcup_{k=1}^{\infty}\bigcup_{k=1}^{\infty}\ln\kappa$$

Then,

Example:

On open interval (0,1) for $x,y \in (0,1)$ define $x \sim y$ if $x - y \in Q$.

Then ~ **is an equivalence relation.**

Let A be the set consisting of exactly one element from each equivalence class.

Then $A \subseteq (0,1)$

And so $m^A A < \infty$

(: A is bdd)

 A_1 , A_2 are equivalence classes.

Therefore,

 $UA_i = (0,1)$

```
(0,1) is uncountable
Since m^{*}(0,1) = 1 \neq 0
Therefore, by theorem
(0, 1) is uncountable.
(0,1) = A_1 U A_2
Each of A_1, A_2 are countables
```

Collection of sets \rightarrow points both uncountable

Let $D = (-1,1) \cap Q$

Let B = D + A

Since D is countable with D= $\{r_1, r_2, _\}$

So that

 $B = \bigcup_{n=1}^{\infty} (r_n + A)$ $(0,1) \subseteq B \subseteq (-1, 2)$


```
Thus, 1 \le m^*B \le 3
Let A_n = r_n + A
For n \neq m,
A_n \cap A_m = \phi
Let x \in A_n \cap A_m
x = r_n + a = r_m + a'
```

 r_n and r_m are rationals.

So a and a' differ by rational.

But we are taking one element from each

equivalence class and a and a' are equivalent.

$$\Rightarrow$$
 a = a'

 \Rightarrow a, a' \in A

 \Rightarrow r_n = r_m , n=m

Also m* A_n = m*A
Now (A_n) is sequence of disjoint and distinct sets
with finite measure
Such that
$$B = \bigcup_{n=1}^{\infty} A_n$$

For these sets,
 $m*B \neq \sum_{n=1}^{\infty} m*A_n$

First note that $m^*A \neq 0$

As then $m^*B = 0$ $\sum_{n=1}^{\infty} m^* A_n = \infty$ But, $B = \bigcup_{n=1}^{\infty} A_n$

m*B is finite

Therefore, $m^*B \neq \sum_{n=1}^{\infty} m^* A_n$

```
A subset E of R is called Lebesgue Measurable
  if m^*A = m^* (A \cap E) + m^* (A \cap E^c)
For every A \subseteq \mathbb{R},
(I) If E is measurable then so is E^{c}
Since for A, B \subseteq \mathbb{R}
m^* (A \cup B) \leq m^*A + m^*B
```

$A=(A \cap E) \cup (A \cap E^c)$

So, $m^*A \le m^* (A \cap E) + m^*(A \cap E^c)$

For showing that E is measurable, we need to check that

 $m^*A \ge m^* (A \cap E) + m^*(A \cap E^c)$

(II) If $m^* E = 0$ then E is measurable.

Let $A \subseteq \mathbb{R}$

Since $E \cap A \subseteq E$

 $m^* (A \cap E) = 0$

Now, $(A \cap E^c) \subseteq A$

 \Rightarrow m* (A \cap E^c) \leq m* A

Thus, $m^*A \ge m^* (A \cap E) + m^*(A \cap E^c)$

Hence E is measurable.

(III) If E is measurable then so is E+x for anyx∈ℝ

 \Rightarrow m*A = m* (A-x) = m* ((A-x) \cap E) +

 $m^*((A-x) \cap E^c)$

 $= m^{*} ((A-x) \cap E + x) + m^{*} ((A-x) \cap E^{c} + x)$ $= m^{*} (A \cap E + x) + m^{*} (A \cap (E + x)^{c})$ Hence,

E + x is measurable.

(IV) If E and F are measurable then E ∪ F is also measurable.

 \Rightarrow If E, F are measurable then,

 $E \cap F = (E^c \cup F^c)^c$

 $\mathbf{E} \setminus \mathbf{F} = \mathbf{E} \cap \mathbf{F}^{\mathbf{c}}$

E, F are measurable \Rightarrow E U F is also measurable.

```
To prove this, we need to verify that
m^*A = m^* (A \cap (E \cup F) + m^* (A \cap (E \cup F)^c))
For any A \subseteq \mathbb{R},
m^*A = m^* (A \cap (E \cup F) + m^* (A \cap (E^c \cap F^c)))
Now,
(A \cap (E \cup F) \cap E = A \cap E)
```

$(A \cap (E \cup F) \cap E^{c} = A \cap F \cap E^{c})$ $m^*A = m^* (A \cap E) + m^* (A \cap E^c)$ $= m^* (A \cap E) + m^* (A \cap E^c \cap F) +$ $+ m^* (A \cap (E \cup F)^c)$

 $m^* (A \cap E^c \cap F^c)$

 $= m^* (A \cap (E \cup F) \cap E) + m^* (A \cap F \cap E^c)$

 $= m^* (A \cap (E \cup F) \cap E) +$ $m^* (A \cap (E \cup F) \cap E^c) + m^* (A \cap (E \cup F)^c)$ $= m^* (A \cap (E \cup F)) + m^* (A \cap (E \cup F)^c)$ Now, $m^* (A \cap (E \cup F)) = m^* (A \cap E) +$ $m^* (A \cap F \cap E^c)$ Provided E is measurable.

```
If E \cap F = \phi, E, F measurable
Then F \subseteq E^c
m^* (A \cap (E \cup F)) = m^* (A \cap E) + m^* (A \cap F)
In particular,
If A = E \cup F
m^{*}(E \cup F) = m^{*}E + m^{*}F
```

Thus, we can say

If E and F are measurable and $E \cap F = \phi$ Then,

 $m^* (A \cap (E \cup F)) = m^* (A \cap E) + m^* (A \cap F)$ $\forall A \subseteq \mathbb{R}$

And, m^* (E U F) = $m^*(E) + m^*(F)$

Now, inductively, if E_1 , E_2 , ___, E_n are mutually

disjoint measurable sets then,

$$\mathbf{m}^*(\bigcup_{i=1}^n \mathbf{E}_i) = \sum_{n=1}^\infty \mathbf{m}^* \mathbf{E}_i$$

