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Partition

A partition of an interval is a division of an interval into several

disjoint sub-intervals, or we say Let [a, b] be an interval of real

numbers. A partition P is defined as the ordered n-tuples of real

numbers P = (x0, x1, ...xn) such that

a = x0 < x1 < ...xn = b.

Norm

The norm of a partition P is defined as

‖P‖ = sup{xi − xi−1}ni=1.



Line Integration

Deepali

Jordan Arc

A continuous arc without multiple points is called Jordan Arc

without multiple points is called jordan arc i.e, an arc that

satisfies only one value of t.

Continuous Jordan Curve

A continuous Jordan Curve consists of chain of finite number of

continuous arcs.
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Contour

A contour is a continuous chain of finite number of regular arcs if

A be the starting point of the first arc and B be the end point of

last arc. Then the integral along such a curve can be written as,∫
AB

f (z)dz .
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Regular Arc

If in addition to the definition of jordan arc, ψ′(t) and φ′(t) arc

also continuous within range

α ≤ t ≤ β,

then that jordan arc is called regular arc.

The contour is said to be closed if the starting point A coincide

with end point of the last arc. The integral along such a closed

contour is written as, ∫
C

f (z)dz

and is real as f (z) taken on closed contour C .
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Rectifiable Curve

Let the equation of arc ‘L′ of plane curve be,

x = φ(t), y = ψ(t); α ≤ t ≤ β.

Divide the interval (α, β) into finite number of sub-intervals,

[t0, t1], [t1, t2], .....[tn−1, tn],

where α = t0 < t1 < t2 < .... < tn−1 < tn. Let z0, z1, ...., zn be

the points on the curve corresponding to t0, t1, t2, ...tn. We join

each of the z0, z1, ...zn−1 to next point by a straight line. Thus,

we obtain a polygon .
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Let f (z) be a function complex variable be continuous in a

domain D and a, b be two points in this domain, then the integral

of f (z) from a to b be defined as follow: Let C be any rectifiable

curve lying entirely on D so that f (z) be continuous on domain C.

Let P = {a = z0, z1, z2, .....zn = b} be any partition of C into n

segments selected arbitrarily along the curve. On each segment

joining zk−1 to zk choose a point ξk . Consider the sum

S =
n∑

j=1

f (ξk)(zk − zk−1) =
n∑

j=1

f (ξk)∆zk .
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Let ∆ be the length of the longest chord ∆zk . Let the number of

subdivisions n approach infinity in such a way that the length of

the longest chord approaches to zero. The sum S will then

approaches to a limit which does not depend upon the length of

subdivisions and is called the line integral of f (z) from a to b

along the curve C:∫ b

a

f (z)dz = lim
∆→0

infty∑
k=1

f (ξk)∆zk .
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Theorem

If F is a function such that dF (z)/dz = f (z) at each point of C,
then ∫ b

a

= F (b)− F (a).
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Complex Line Integral

Consider the line integral∫ b

a

P(x , y)dx + Q(x , y)dy .

If P(x , y)dx + Q(x , y)dy , or we say Pdx + Qdy , is an exact

differential equation i.e. if

∂P

∂y
=
∂Q

∂x
,

there is a function φ(x , y) such that dφ = Pdx + Qdy and the

line integral is equal to the change of φ(x , y) along the curve from

point A to B . Moreover, if ∂P
∂y = ∂Q

∂x everywhere in a simply

connected region, then the value of the line integral between two

points of the region is path independent.
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Real and complex line integral are connected as follow:

If f (z) = u(x , y) + iv(x , y) be a complex valued function, then

I =

∫ b

a

f (z)dz =

∫ b

a

(u(x , y) + iv(x , y)) (dx + idy)

=

∫ b=(xn,yn)

a=(x0,y0)

u(x , y)dx−v(x , y)dy+i

∫
a=(x0,y0)

u(x , y)dy+v(x , y)dx

=

∫ b

a

udx − vdy + i

∫ b

a

vdx + udy .
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If f (z) and g(z) are integrable along curve C, then

1.
∫
C (f (z) + g(z)) dz =

∫
C f (z)dz +

∫
C g(z)dz .

2.
∫
C cf (z)dz = c

∫
C f (z)dz , where c is any constant.

3.
∫ b

a
f (z)dz = −

∫ a

b
f (z)dz .

4.
∫ b

a
f (z)dz =∫ q

a
f (z)dz +

∫ b

q
f (z)dz , where points a, q, b are inC.
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Integral

Theorem

If a function f (z) is continuous on a contour C of length L and

and if M is upper bound of |f (z)| on C, then∣∣∣∣∫
C
f (z)dz

∣∣∣∣ ≤ ML.
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Divide the contour C into n parts by means of the points z0, z1,

z2,.....zn. We choose a point ξk on each arc joining zk−1 to zk ,

then ∫
C
f (z)dz = lim

n→∞

n∑
k=1

(zk − zk−1)f (ξk). (1)

We know that modulus of sum of n complex numbers is less than

equal to the sum of the modulus of these n complex numbers,

therefore ∣∣∣∣∣
n∑

k=1

(zk − zk−1)f (ξk)

∣∣∣∣∣ ≤
n∑

k=1

|(zk − zk−1)f (ξk)|

=
n∑

k=1

|zk − zk−1| |f (ξk)|

≤
n∑

k=1

|zk − zk−1|.
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Now making n→∞ and using (1), we get∣∣∣∣∫
C
f (z)dz ≤ lim

n→∞
M (|z1 − z0|+ |z2 − z1|+ ....+ |zn − zn−1|)

∣∣∣∣
= M lim

n→∞
(Chordz1z0 + Chordz2z1 + .....+ Chordznzn−1)

= M (arcz1z0 + arcz2z1 + ....arcznzn−1)

= M Arc length of Contour C

= ML.

Thus,
∣∣∫
C f (z)dz

∣∣ ≤ ML.
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1.Evaluate
∫
C

1
z dz ; where

C : x = a cos θ, y = a sin θ, 0 ≤ θ ≤ π.

Solution f (z) = 1
z = 1

x+iy =
(

x
x2+y2

)
+ i
(
−y

x2+y2

)
=
(

x
a2 + i −ya2

)
Here, u(x , y) = x

a2 and v(x , y) = −y
a2 .

Thus

I =

∫
C
f (z)dz =

∫
C

(u + iv)dx +

∫
C

(−v + iu)dy

= I1 + I2.
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Here,

I1 =

∫ −a
a

(
x

a2
+ i
−y
a2

)
dx

=

∫ −a
a

(
x

a2
+ i

(
−1

a2

)√
a2 − x2

)
dx

= 0 + i

(
−1

a2

)∫ −a
a

√
a2 − x2dx

= i
π

2
.

Similarly, I2 = i π2 hence I = iπ.
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