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solids
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Quantum Mechanical Simple Harmonic Oscillator

• Quantum mechanical results for a simple harmonic oscillator 
with classical frequency ω:  The energy is quantized

En

• Energy levels are 
equally spaced! 



Often, we consider  En  as being constructed by adding n excitation 
quanta of energy         to the ground state.
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If the system makes a transition from a lower energy level to a higher 
energy level, it is always true that the change in energy is an integer 
multiple of

Phonon absorption  or 
emission

E0  Ground state energy of the 
oscillator. 



ΔE = (n – n΄) 
n & n ΄ = integers

In complicated processes, such as phonons interacting with 
electrons or photons, it is known that phonons are not conserved. 
That is, they can be created and destroyed during such interactions.



Thermal Energy & Lattice Vibrations

As we’ve been discussing in detail, the atoms in a crystal vibrate 
about their equilibrium positions.                                                          

This motion produces vibrational waves. 

The amplitude of this vibrational motion increases 
as the temperature increases.

In a solid, the energy associated with these vibrations is called                                                                          
Thermal Energy



• A knowledge of the thermal energy is fundamental to obtaining an 
understanding many of the basic properties of solids. A relevant 
question is how do we calculate this thermal energy? 

• Also, we would like to know how much thermal energy is available to 
scatter a conduction electron in a metal or semiconductor. This is 
important; this scattering contributes to electrical resistance in the material. 

• Most important, though, this thermal energy plays a fundamental 
role in determining the

Thermal Properties of a Solid
• A knowledge of how the thermal energy changes with temperature gives an 

understanding of the heat energy which is necessary to raise the 
temperature of the material.

• An important, measureable property of a solid is it’s

Specific Heat or Heat Capacity



The thermal energy is the  dominant contribution to the heat 
capacity in most solids. In non-magnetic insulators, it is the only 
contribution. Some other contributions:

Conduction Electrons in metals & semiconductors.
The magnetic ordering in magnetic materials.

Calculation of the vibrational contribution to the thermal energy & heat 
capacity of a solid has 2 parts: 

1.  Evaluation of the contribution of a single vibrational mode.

2. Summation over the frequency distribution of the modes. 

Lattice Vibrational Contribution to the Heat Capacity



Vibrational Specific Heat of Solids

cp Data at T = 298 K
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Average energy of a harmonic 
oscillator and hence of a lattice 
mode of angular frequency  at 
temperature T  

 Energy of oscillator 
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The probability of the oscillator being in 
this level as given by the Boltzman factor 

exp( / )n Bk T

Thermal Energy & Heat Capacity                   
Einstein Model
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Eqn (*) can be written
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Finally, the 
result is
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This  is  the Mean Phonon Energy. The first term in the above 
equation is the zero-point energy. As mentioned before even at 0ºK 
atoms vibrate in the crystal and have zero-point energy. This is the 
minimum energy of the system.

The average number of phonons is given by the Bose-Einstein 
distribution as  
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The second term in the mean energy is the phonon contribution to the 
thermal energy.

(number of phonons) x (energy of phonon)   =    (second term in     )
_




 Mean energy of a 
harmonic oscillator 
as a function of T

Low Temperature Limit
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Since exponential term 
gets bigger



         is independent of frequency of oscillation.

This is the classical limit because the energy 
steps are now small compared with the energy 
of the harmonic oscillator.

So that          is the thermal energy of the 
classical 1D harmonic oscillator.
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Heat Capacity C

• Heat capacity C can be found by differentiating the 
average phonon energy
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Specific heat in this approximation 
vanishes exponentially at low T and 
tends to classical value at high 
temperatures.

These features are common to all 
quantum systems; the energy tends to 
the zero-point-energy at low T and to 
the classical value of Boltzmann 
constant   at high T.
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,T K

3R
    This range usually includes RT. 
From the figure it is seen that Cv is 
equal to 3R at high temperatures 
regardless of the substance. This fact is 
known as Dulong-Petit law. This law 
states that specific heat of a given 
number  of  a toms of  any sol id  is 
independent of temperature and is the 
same for all materials!

vC

Specific heat at constant volume depends on temperature as shown in 
figure below. At high temperatures the value of Cv is close to 3R, 
where R is the universal gas constant. Since R is approximately 2 
cal/K-mole, at high temperatures Cv is app. 6 cal/K-mole.



Cv vs T for Diamond

Points:
Experiment

Curve: 
Einstein Model
Prediction



Classical Theory of Heat Capacity of Solids
         The solid is one in which each atom is bound to its side by 

a harmonic force. When the solid is heated, the atoms vibrate 
around their  sites like a set of harmonic oscillators. The  
average energy for a 1D oscillator is kT. Therefore, the 
averaga energy per atom, regarded as a 3D oscillator, is 3kT, 
and consequently the energy per mole is

                                      =        
     where N is Avagadro’s number, kB is Boltzmann constant and  R is the gas 

constant. The differentiation wrt temperature gives;

3 3BNk T RT
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Einstein heat capacity of solids
• The theory explained by Einstein is the first quantum theory of solids. 

He made the simplifying assumption that all 3N vibrational modes of a 
3D solid of N atoms had the same frequency, so that the whole solid had 
a heat capacity 3N times

• In this model, the atoms are treated as independent oscillators, but the energy 
of the oscillators are taken quantum mechanically as                             

   This refers to an isolated oscillator, but the atomic oscillators in a solid are not 
isolated.They are continually exchanging their energy with their surrounding 
atoms.

• Even this crude model gave the correct limit at high temperatures, a heat 
capacity of the Dulong-Petit law where R is universal gas constant.
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• At high temperatures, all crystalline solids have a specific heat of 
6 cal/K per mole; they require 6 calories per mole to raise their 
temperature 1 K.

•This arrangement between observation and classical theory break 
down if the temperature is not high.

•Observations show that at room temperatures and below the 
specific heat of crystalline solids is not a universal constant.

6 cal
Kmol

Bk


vC

T
3vC R

In each of these materials (Pb,Al, 
Si,and Diamond) specific heat 
approaches constant value 
asymptotically at high T. But at 
low T’s, the specific heat 
decreases towards zero which is 
in a complete contradiction with 
the above classical result.



• Einstein model also gave correctly a specific heat 
t end ing  to  ze ro  a t  abso lu te  ze ro ,  bu t  the 
temperature dependence near T= 0 did not agree 
with experiment.

• Taking into account the actual distribution of 
vibration frequencies in a solid this discrepancy 
can be accounted using one dimensional model of 
monoatomic lattice



Density of States
According to Quantum Mechanics if a particle is constrained;
• the energy of particle can only have special discrete energy 

values.
• it cannot increase infinitely from one value to another.
• it has to go up in steps.

Thermal Energy & Heat Capacity             
Debye Model



• These steps can be so small depending on the system 
that the energy can be considered as continuous.

• This is the case of classical mechanics.
• But on atomic scale the energy can only jump by a 

discrete amount from one value to another. 

Definite energy levels Steps get small Energy is continuous



• In some cases, each particular energy level can be 
associated with more than one different state (or 
wavefunction ) 

• This energy level is said to be degenerate. 

• The density of states            is the number of discrete 
states per unit energy interval, and so that the number 
of states between         and                 will be                  .
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There are two sets of waves for solution;
• Running waves
• Standing waves
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These allowed k wavenumbers corresponds to the running 
waves; all positive and negative values of k are allowed.  By 
means of periodic boundary condition
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the 1D chain

Running waves:

These allowed wavenumbers are uniformly distibuted in k at a 
density of                  between k and k+dk.  R k
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In some cases it is more suitable to use standing waves,i.e. chain 
with fixed ends. Therefore we will have an integral number of half 
wavelengths in the chain;

Standing waves:
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These are the allowed wavenumbers for standing waves; only 
positive values are allowed.
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These allowed k’s are uniformly distributed between k and k+dk 
at a density of 

( )S
Lk dk dk
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 
2R
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



DOS of standing wave

DOS of running wave

( )S k

•The density of standing wave states is twice that of the running waves. 

•However in the case of standing waves only positive values are 
allowed

•Then the total number of states for both running and standing waves 
will be the same in a range dk of the magnitude k

•The standing waves have the same dispersion relation as running 
waves, and for a chain containing N atoms there are exactly N distinct 
states with k values in the range 0 to         ./a



       modes with frequency from  to +d   corresponds

          modes with wavenumber from k to k+dk

The density of states per unit frequency range g():

• The number of modes with frequencies  and +d 
will be g()d.

• g() can be written in terms of S(k) and R(k).

dn

dR



Choose standing waves to obtain ( )g 

Let’s remember dispertion relation for 1D monoatomic lattice
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True density of states



constant density of states



N m
K

max 2 K
m

 
K
m



True density of states by 
means of above equation

  1/ 22 2
max

2( ) Ng   



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True DOS(density of states) tends to infinity at                       ,

since the group velocity               goes to zero at this value of     .

Constant density of states can be obtained by ignoring the 
dispersion of sound at wavelengths comparable to atomic spacing.

max 2 K
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/d dk

( )g 



The energy of lattice vibrations will then be found by 
integrating the energy of single oscillator over the distribution 
of vibration frequencies. Thus
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Mean energy of a harmonic 
oscillator

One can obtain same expression of            by means of using 
running waves.

for 1D

It should be better to find 3D DOS in order to compare the 
results with experiment.

( )g 



3D DOS
• Let’s do it first for 2D
• Then for 3D.
• Consider a crystal in the shape of 2D box with crystal lengths 

of L.
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•Let’s calculate the number of modes within a range of 
wavevector k.

•Standing waves are choosen but running waves will lead 
same expressions.

•Standing waves will be of the form

• Assuming the boundary conditions of

•Vibration amplitude should vanish at edges of

Choosing 

   0 sin sinx yU U k x k y

0; 0; ;x y x L y L   

;x y
p qk k
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positive integer
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•The allowed k values lie on a square lattice of side         in the 
positive quadrant of k-space. 

•These values will so be distributed uniformly with a density of                
per unit area.

• This result can be extended to 3D.

Standing wave pattern for a 
2D box
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Configuration in k-space
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Octant of the crystal:

 kx,ky,kz(all have positive values)

The number of standing waves;
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•                     is a new density of states defined as the number of 

states  per unit magnitude of  in 3D.This eqn can be obtained by 

using running waves as well.

•   (frequency) space can be related to k-space:
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Let’s find C at low and high temperature by means of using the 

expression of           . g 
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High and Low Temperature Limits

•          This  result is true only  if                       
  At low T’s only lattice modes having low frequencies can be 

excited from their ground states;

3 BNk T 
Each of the 3N lattice 
m o d e s  o f  a  c r y s t a l 
containing N atoms 
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     depends on the direction and there are two transverse, one 
longitudinal acoustic branch:
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