URINE FORMATION PART 1

E-MODULE BY DR. SEEMA MARWAHA ZOOLOGY DEPTT.

EXCRETORY SYSTEM

- Every living organism generates waste in its body and has a mechanism to expel it. In humans, waste generation and disposal are taken care of by the human excretory system. The human excretory system comprises of the following structures:
- 2 Kidneys
- 2 Ureters
- 1 Urinary bladder
- 1 Urethra

URINARY SYSTEM

Components of the Urinary System

URINE FORMATION AND OSMOREGULATION

NEPHRON

- The basic functional unit for the urine formation is called nephron. Very important is the arrangement of nephron: it begins with renal corpuscle that consists of a glomerulus(which is supplied by afferent glomerular arteriole and drained by efferent glomerular arteriole) and Bowman's capsule.
- Renal tubules have three segments. The proximal tubule, loop of Henle (descending limb and ascending limb) and distal convoluted tubule that subsequently joins the collecting ducts.

URINE FORMATION STEPS

- Three stages of urine formation are
- Filtration Removing maximum waste from blood into nephron and creating a filtrate.
- Reabsorption Bringing useful molecules back into the blood
- Tubular Secretion Bringing as much harmful molecules from the blood as possible

GLOMERULAR FILTRATION

- At the glomerulus there is very high pressure, thus this type of filtration is called pressure filtration.
- The substances removed create a plasma-like filtrate in the Bowman's capsule
- Things that are filtered into the Bowman's capsule from the blood:
- Water
- NaCl
- Glucose
- H+
- Urea/Uric acid

GLOMERULAR FILTRATION

- 1) Fluid is not exchanged between the capillary and the interstitium, but between the capillary and the fluid of Bowman's capsule
- 2) Hydrostatic pressure in the capillaries is different, the movement is thus only one-sided (in the direction of filtration)
- 3) Filtration barrier (see above) has a unique structure and properties which do not allow passage of proteins into the filtrate (primary urine)

GFR is therefore dependent on the **renal blood flow**, the **filtration pressure**, the **plasma oncotic pressure**, and the **size of the filtration area**.

TUBULAR REABSORPTION

- Occurs at the proximal convoluted tubule and the Loop of Henle.
- In the proximal convoluted tubule:
- Selective reabsorption: Nephron actively transports glucose, amino acids, and Na+ ions back into the blood (useful molecules – takes ATP).
- Negative ions (i.e. Cl-) follow the positive ion (Na+) passively
- More ions/molecules moving back into the blood concentrates the blood making an osmotic gradient (Difference in concentration between two solutions)
- This causes water to reenter the blood vis osmosis.
- This causes the filtrate to become concentrated as it moves through the proximal convoluted tubule.

TUBULAR REABSORPTION

- In the Loop of Henle:
- In the descending loop: not permeable to ions, permeable to water.
- Water leaves nephron, urine becomes more concentrated
- In the ascending loop: permeable to ions, not permeable to water.
- Na+ leaves the nephron, fluid around descending loop becomes concentrated
- This allows for more water reabsorption (back into the blood) anytime the nephron passes back into that region (even the collecting duct!)

TUBULAR SECRETION

- Occurs in the distal convoluted tubule (+ little in collecting duct).
- Movement of waste still in blood into nephron
- Active Transport: Urea, Uric acid, excess K+, vitamin C, drugs, H+.
- Some water enters the urine again
- The urine is now collected in the collecting ducts and carried to the bladder through the ureter for excretion.

URINE FORMATION

COMPOSITION OF URINE

- Physical characteristics: Urine is the waste product that is eliminated by the kidneys. Urine contains waste products like urea, salts, excess ions, water, and metabolized products of drugs.
- Urine is often light or pale yellow in colour and fresh urine has a slight ammoniacal smell. It is often clear in turbidity with a pH of around 4-8. These characteristics vary depending upon the nature of the disease in the body. Often a urine sample analysis helps to detect diseases like diabetes, kidney failures etc.
- Chemical composition: Chemically, urine is composed mainly of urea, sodium chloride, potassium ions, creatinine, ammonia products, and some amount of protein, and other metabolites.

MICTURITION

- Micturition or urination is the process of expelling urine from the bladder. This act is also known as voiding of the bladder.
- The kidneys filter the urine and it is transported to the urinary bladder via the ureters where it is stored till its expulsion.
- The process of micturition is regulated by the nervous system and the muscles of the bladder and urethra.
- The urinary bladder can store around 350-400ml of urine before it expels it out.